

New CDF Results on Diffraction

Christina Mesropian

The Rockefeller University

Outline

Introduction

Diffractive Structure Function

Ratio of SD/ND dijets vs $x_{bjorken}$ Q^2 dependence of SD/ND ratio Q^2 dependence of t in SD dijets

Exclusive Production

Exclusive dijets
Inclusive + Exclusive dijet Monte Carlo
Heavy flavor jet fraction
Exclusive e⁺e⁻ and $\gamma\gamma$ production

Diffraction at the Tevatron

Goals of Diffractive Program at CDF:

To understand the nature of colorless exchange To test the feasibility of diffraction as a tool to search for new physics at the LHC

Diffraction at CDF in Run I

Soft Diffraction

Single Diffraction

PRD 50, 5355 (1994)

Double Diffraction

PRL 87, 141802 (2001)

Double Pomeron Exc.

PRL 93, 141601 (2004)

Multi-Gap Diffraction

PRL 91, 011802 (2003)

Hard Diffraction

Rapidity Gap Tag

W PRL 78, 2698 (1997)

Dijets PRL 79, 2636 (1997)

b-quark PRL 84, 232 (2000)

J/Ψ PRL 87, 241802 (2001)

Roman Pot Tag

Dijets:

1.8 TeV PRL 84, 5043 (2000)

630 GeV PRL 88, 151802 (2002)

Jet-Gap-Jet

1.8 TeV PRL 74, 855 (1995)

1.8 TeV PRL 80, 1156(1998)

630 GeV PRL 81, 5278(1998)

Dijets:

1.8 TeV PRL 85, 4217 (2000)

Run II

Tevatron: $\sqrt{s} = 1.96 \text{ TeV}$ 396 nsec bunch spacing 36x36

Run II: Forward Detectors

Scintillation counters:

detect particles traveling from IP along beam pipe $5.5 < |\eta| < 7.5$ coverage

The Diffractive Structure Function

parton $x = \beta \xi$

 β – fraction of **P** momentum carried by parton

 ξ – fractional momentum loss of \overline{p}

Hard diffraction: production of high p_T dijets

Diffractive dijets

$$\sigma(\overline{p}p \to \overline{p}X) \approx F_{jj} \otimes F_{jj}^D \otimes \hat{\sigma}(ab \to jj)$$

Study the diffractive structure function

$$F_{jj}^{D} = F_{jj}^{D}(x, Q^{2}, t, \xi)$$

Experimental Determination of F_{jj}^D

$$R_{\frac{SD}{ND}}(x,\xi) = \frac{\sigma(SD_{jj})}{\sigma(ND_{jj})} = \frac{F_{jj}^{D}(x,Q^{2},\xi)}{F_{jj}(x,Q^{2})} \text{(LOQCD)}$$

Data

known PDF

Run II: Diffractive Dijets

Process

Data:

Method

measure ξ from calorimeter information sum all towers except \overline{p}

$$\xi_{\bar{p}}^{X} = \frac{M_{X}^{2}}{s} \approx \frac{1}{\sqrt{s}} \sum_{i} E_{T}^{i} e^{-\eta^{i}}$$

MP energy scale: $\pm 25\% \rightarrow \Delta \log \xi = \pm 0.1$ RP acceptance $(0.03 < \xi < 0.1) \sim 80\%$ (Run I)

Diffractive Structure Function

Ratio of SD to ND dijet event rates as a function of x_{BI} compared with Run I

No ξ dependence is observed within $0.03 < \xi < 0.1$

Confirms Run I result

Ratio of SD to ND dijet event rates as a function of x_{BJ} for different values of $Q^2 \equiv E_T^2$ No significant dependence is observed for $100 < Q^2 < 10000 \text{ GeV}^2$ Pomeron evolves like proton?

Diffractive Structure Function:

Fit $\frac{d\sigma}{dt}$ to a double exponential

$$F = 0.9 \cdot e^{b_1 \cdot t} + 0.1 \cdot e^{b_2 \cdot t}$$

no diffraction dips no Q^2 dependence in slope from inclusive to $Q^2 \sim 10^4 \ GeV^2$

same slope at t=0 for entire region of $0 < Q^2 < 4500 \ GeV^2$

Diffractive Higgs Production in DPE

Attractive channel for Higgs discovery at LHC

Standard Model light Higgs:

$$p + p \rightarrow p + H(\rightarrow b\overline{b}) + p$$

"exclusive channel" →clean signal

$$\boldsymbol{M}_{H} = \boldsymbol{M}_{miss} = (s \cdot \boldsymbol{\xi}_{p} \cdot \boldsymbol{\xi}_{\overline{p}})^{1/2}$$

$$\sigma_H^{excl} \sim 3 fb$$
,

signal/background~3@LHC (if $\Delta M_{miss} = 1 \, GeV$)

To calibrate Diffractive Higgs predictions

exclusive production in DPE

Exclusive **Dijets**:

$$gg^{PP} \rightarrow gg$$

large cross section

exclusive $gg^{PP} \rightarrow q\bar{q}$ suppressed

Exclusive $\gamma\gamma$: $gg^{PP} \rightarrow \gamma\gamma$ small cross section clean signal

Search for Exclusive Dijets

12

Method:

Select diffractive dijet events produced by DPE

$$p + \overline{p} \rightarrow \overline{p} + X (\geq 2 jets,...) + gap$$

Data sample of 428 pb⁻¹

Reconstruct

$$R_{jj} = \frac{M_{jj}}{M_X}$$
, where

 $M_{jj} = \sqrt{(E_{jet1} + E_{jet2})^2 - (P_{jet1} + P_{jet2})^2}$ is a dijet mass and M_X is the mass of the system X

Compare

with inclusive DPE Monte Carlo POMWIG

Excess of events in data observed at high R_{jj}

Is this an exclusive signal?

Inclusive+Exclusive Dijet: MC vs Data

CDF Run II Preliminary

ExHuME : $gg \rightarrow gg$ LO matrix element event generator based on pQCD calculations of KMR

CDF Run II Preliminary

Exclusive DPE (in DPEMC):

 $PP \rightarrow 2 jets$

Regge inspired non-perturbative production of excl. events based on BL

The excess at high R_{jj} is well described by the two exclusive dijet production models

Heavy Flavor Jet Fraction vs R

Theory

 $gg \rightarrow gg$ contribution is dominant in LO

 $gg \rightarrow q\overline{q}$ is supressed when $M_{jj} >> m_q$

Experimental Method - using b/c-Quark Jets

look for the suppression of *b*-quark jet fraction in the exclusive region many exp. systematics canceled out HF quarks identifies well

Results:

CDF Run II Preliminary

Ratio of b/c-jets to all jets (normalized to the mean in $R_{ij} < 0.4$)

Decreasing trend observed at high R_{ii}

Comparing Inclusive Jet and Heavy

Flavor Jet Results

CDF Run II Preliminary

The two results are consistent with each other

ISMD 2006 15

Exclusive Dijet Cross Section

E_T dependence of the exclusive dijet cross section strongly prefers ExHuME MC based on KMR

ExHuME MC agrees with cross section as function of the dijet mass, M_{jj}

Exclusive e⁺e⁻ Production

Select e⁺e⁻ events:

reconstruct e⁺e⁻
request no additional calorimeter activity
protons are not tagged

16 similar events are found

Exclusive e⁺e⁻ Production

Backgound estimate 2.1^{+0.7}_{-0.3}

$$\sigma_{\text{exp}} = 1.6^{+0.5}_{-0.3}(stat) \pm 0.3(sys) \ pb$$

$$\sigma_{LPAIR} = 1.711 \pm 0.008 \ pb$$

Exclusive yy Production

Exclusive gg events:

select in the same way as e+e-, (except for tracking) agreement of exclusive e+e- cross section provides cross check of the methodology

3 events are found

1⁺³₋₁ events are predicted from ExHuME MC Background estimate is not yet complete

Summary

New CDF results on Diffraction

Diffractive Structure function

Extended Run I results using single diffractive dijets no Q² dependence slope at t=0 is independent of Q²

Exclusive Production

observed excess events at high \boldsymbol{R}_{jj} being consistent with exclusive dijets

observed events being consistent with exclusive gg production exclusive e⁺e⁻ production – cross check for di-photons

Backup slides

Run II Detectors

Diffractive W (Z) Production

Study diffractive W-boson production, and the partonic structure of the Pomeron by a comparison to the diffractive dijet production

Analysis in progress

Rate lower by order α_s + 1 associated jet

Run I: R_W (SD/ND) = 1.15 ± 0.51(stat) ± 0.20(syst) %

The Diffractive Structure Function:

Run I

discrepancy in normalization

QCD factorization breakdown

$$\mathbf{F}_{jj}^{D} = \mathbf{C}\boldsymbol{\beta}^{-n}\boldsymbol{\xi}^{-m}$$
Regge factorization holds

for
$$\beta < 0.5$$

 $n = 1.0 \pm 0.1$
 $m = 0.9 \pm 0.1$

Pomeron exchange